Highest vectors of representations (total 3) ; the vectors are over the primal subalgebra. | \(-g_{14}+g_{13}\) | \(g_{10}\) | \(g_{4}\) |
weight | \(\omega_{1}\) | \(\omega_{2}\) | \(\omega_{3}\) |
Isotypical components + highest weight | \(\displaystyle V_{\omega_{1}} \) → (1, 0, 0) | \(\displaystyle V_{\omega_{2}} \) → (0, 1, 0) | \(\displaystyle V_{\omega_{3}} \) → (0, 0, 1) | |||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | |||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. |
| Semisimple subalgebra component.
|
| |||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(\omega_{1}\) \(-\omega_{1}+\omega_{2}\) \(-\omega_{2}+2\omega_{3}\) \(0\) \(\omega_{2}-2\omega_{3}\) \(\omega_{1}-\omega_{2}\) \(-\omega_{1}\) | \(\omega_{2}\) \(\omega_{1}-\omega_{2}+2\omega_{3}\) \(-\omega_{1}+2\omega_{3}\) \(\omega_{1}\) \(-\omega_{1}+\omega_{2}\) \(\omega_{1}+\omega_{2}-2\omega_{3}\) \(-\omega_{2}+2\omega_{3}\) \(-\omega_{1}+2\omega_{2}-2\omega_{3}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(0\) \(0\) \(\omega_{1}-2\omega_{2}+2\omega_{3}\) \(\omega_{2}-2\omega_{3}\) \(-2\omega_{1}+\omega_{2}\) \(-\omega_{1}-\omega_{2}+2\omega_{3}\) \(\omega_{1}-\omega_{2}\) \(-\omega_{1}\) \(\omega_{1}-2\omega_{3}\) \(-\omega_{1}+\omega_{2}-2\omega_{3}\) \(-\omega_{2}\) | \(\omega_{3}\) \(\omega_{2}-\omega_{3}\) \(\omega_{1}-\omega_{2}+\omega_{3}\) \(-\omega_{1}+\omega_{3}\) \(\omega_{1}-\omega_{3}\) \(-\omega_{1}+\omega_{2}-\omega_{3}\) \(-\omega_{2}+\omega_{3}\) \(-\omega_{3}\) | |||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(\omega_{1}\) \(-\omega_{1}+\omega_{2}\) \(-\omega_{2}+2\omega_{3}\) \(0\) \(\omega_{2}-2\omega_{3}\) \(\omega_{1}-\omega_{2}\) \(-\omega_{1}\) | \(\omega_{2}\) \(\omega_{1}-\omega_{2}+2\omega_{3}\) \(-\omega_{1}+2\omega_{3}\) \(\omega_{1}\) \(-\omega_{1}+\omega_{2}\) \(\omega_{1}+\omega_{2}-2\omega_{3}\) \(-\omega_{2}+2\omega_{3}\) \(-\omega_{1}+2\omega_{2}-2\omega_{3}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(0\) \(0\) \(\omega_{1}-2\omega_{2}+2\omega_{3}\) \(\omega_{2}-2\omega_{3}\) \(-2\omega_{1}+\omega_{2}\) \(-\omega_{1}-\omega_{2}+2\omega_{3}\) \(\omega_{1}-\omega_{2}\) \(-\omega_{1}\) \(\omega_{1}-2\omega_{3}\) \(-\omega_{1}+\omega_{2}-2\omega_{3}\) \(-\omega_{2}\) | \(\omega_{3}\) \(\omega_{2}-\omega_{3}\) \(\omega_{1}-\omega_{2}+\omega_{3}\) \(-\omega_{1}+\omega_{3}\) \(\omega_{1}-\omega_{3}\) \(-\omega_{1}+\omega_{2}-\omega_{3}\) \(-\omega_{2}+\omega_{3}\) \(-\omega_{3}\) | |||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{-\omega_{2}+2\omega_{3}}\oplus M_{\omega_{1}}\oplus M_{-\omega_{1}+\omega_{2}}\oplus M_{0}\oplus M_{\omega_{1}-\omega_{2}}\oplus M_{-\omega_{1}} \oplus M_{\omega_{2}-2\omega_{3}}\) | \(\displaystyle M_{\omega_{1}-\omega_{2}+2\omega_{3}}\oplus M_{-\omega_{1}+2\omega_{3}}\oplus M_{-\omega_{2}+2\omega_{3}}\oplus M_{\omega_{1}-2\omega_{2}+2\omega_{3}} \oplus M_{\omega_{2}}\oplus M_{\omega_{1}}\oplus M_{2\omega_{1}-\omega_{2}}\oplus M_{-\omega_{1}-\omega_{2}+2\omega_{3}}\oplus M_{-\omega_{1}+\omega_{2}} \oplus 3M_{0}\oplus M_{\omega_{1}-\omega_{2}}\oplus M_{\omega_{1}+\omega_{2}-2\omega_{3}}\oplus M_{-2\omega_{1}+\omega_{2}}\oplus M_{-\omega_{1}} \oplus M_{-\omega_{2}}\oplus M_{-\omega_{1}+2\omega_{2}-2\omega_{3}}\oplus M_{\omega_{2}-2\omega_{3}}\oplus M_{\omega_{1}-2\omega_{3}} \oplus M_{-\omega_{1}+\omega_{2}-2\omega_{3}}\) | \(\displaystyle M_{\omega_{3}}\oplus M_{\omega_{1}-\omega_{2}+\omega_{3}}\oplus M_{-\omega_{1}+\omega_{3}}\oplus M_{-\omega_{2}+\omega_{3}} \oplus M_{\omega_{2}-\omega_{3}}\oplus M_{\omega_{1}-\omega_{3}}\oplus M_{-\omega_{1}+\omega_{2}-\omega_{3}}\oplus M_{-\omega_{3}}\) | |||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{-\omega_{2}+2\omega_{3}}\oplus M_{\omega_{1}}\oplus M_{-\omega_{1}+\omega_{2}}\oplus M_{0}\oplus M_{\omega_{1}-\omega_{2}}\oplus M_{-\omega_{1}} \oplus M_{\omega_{2}-2\omega_{3}}\) | \(\displaystyle M_{\omega_{1}-\omega_{2}+2\omega_{3}}\oplus M_{-\omega_{1}+2\omega_{3}}\oplus M_{-\omega_{2}+2\omega_{3}}\oplus M_{\omega_{1}-2\omega_{2}+2\omega_{3}} \oplus M_{\omega_{2}}\oplus M_{\omega_{1}}\oplus M_{2\omega_{1}-\omega_{2}}\oplus M_{-\omega_{1}-\omega_{2}+2\omega_{3}}\oplus M_{-\omega_{1}+\omega_{2}} \oplus 3M_{0}\oplus M_{\omega_{1}-\omega_{2}}\oplus M_{\omega_{1}+\omega_{2}-2\omega_{3}}\oplus M_{-2\omega_{1}+\omega_{2}}\oplus M_{-\omega_{1}} \oplus M_{-\omega_{2}}\oplus M_{-\omega_{1}+2\omega_{2}-2\omega_{3}}\oplus M_{\omega_{2}-2\omega_{3}}\oplus M_{\omega_{1}-2\omega_{3}} \oplus M_{-\omega_{1}+\omega_{2}-2\omega_{3}}\) | \(\displaystyle M_{\omega_{3}}\oplus M_{\omega_{1}-\omega_{2}+\omega_{3}}\oplus M_{-\omega_{1}+\omega_{3}}\oplus M_{-\omega_{2}+\omega_{3}} \oplus M_{\omega_{2}-\omega_{3}}\oplus M_{\omega_{1}-\omega_{3}}\oplus M_{-\omega_{1}+\omega_{2}-\omega_{3}}\oplus M_{-\omega_{3}}\) |